Poster Presentation The 3rd Prato Conference on the Pathogenesis of Bacterial Diseases of Animals 2014

Escherichia coli STb enterotoxin dislodges claudin-1 from epithelial tight junctions (#18)

J. Daniel Dubreuil 1 , Hassan Nassour 1
  1. Universite de Montreal , Saint-Hyacinthe, QC, Canada

Enterotoxigenic Escherichia coli produce various heat-labile and heat-stable enterotoxins. STb is a low molecular weight heat-resistant toxin responsible for diarrhea in farm animals, mainly swine. A previous study demonstrated that cells having internalized STb toxin induce epithelial barrier dysfunction through changes in tight junction (TJ) proteins. These modifications contribute probably to the diarrhea observed. To gain insight into the mechanism of increased intestinal permeability following STb exposure, human colon cells (T84) were treated with pure STb toxin after which cells were harvested and proteins extracted. Using a 1% Nonidet P-40-containing solution we investigated the distribution of claudin-1, a major structural and functional TJ protein responsible for the epithelium impermeability, between membrane (NP40-insoluble) and the cytoplasmic (NP-40 soluble) location. Using immunoblot and confocal microscopy, we observed that treatment of T84 cell monolayers with STb induced redistribution of claudin-1. After 24h, cells grown in Ca++-free medium treated with STb showed about 40% more claudin-1 in the cytoplasm compare to the control. Switching from Ca++-free to Ca++-enriched medium (1.8 mM) increased the dislodgement rate of claudin-1 as comparable quantitative delocalization was observed after only 6h. Medium supplemented with the same concentration of Mg++ or Zn++ showed a comparable dislodgement rate compare to the Ca++-free medium. Using anti-phosphoserine and anti-phosphothreonine antibodies we observed that the loss of membrane claudin-1 was accompanied by dephosphorylation of this TJ protein. Overall, our findings showed an important redistribution of claudin-1 in cells treated with STb toxin. The loss of phosphorylated TJ membrane claudin-1 is likely to be involved in the increased permeability observed. The mechanisms by which these changes are brought about remain to be elucidated.